Search results

Search for "pyridine N-oxides" in Full Text gives 11 result(s) in Beilstein Journal of Organic Chemistry.

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • ether α-C–H bond. In the presence of Cu(II), the C(sp2)–C(sp3) coupling of pyridine N-oxides and coumarins with cyclic ethers could be achieved under mild conditions (Scheme 13) [63][64]. These reactions do not all follow the reaction mechanism of the oxidative olefination of simple ethers. The role of
PDF
Album
Review
Published 06 Sep 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • cross-coupling of pyridine N-oxides with nonactivated secondary (2°) alkyl bromides [51]. The cross-coupling is difficult to achieve as the Pd-catalyzed SN2 process is sensitive towards the steric bulk of the secondary or tertiary alkyl electrophiles. The optimized conditions for the ortho-alkylation of
  • pyridine N-oxides 9 with nonactivated secondary (2°) alkyl bromides 10 required 5 mol % of the Pd(OAc)2dppf catalyst, Cs2CO3 (2.0 equiv) as base in toluene at 100 °C as shown in Scheme 3. Under these conditions, the reaction provided diverse 2-alkylpyridine derivatives 11 in moderate to good yields
  • organoboron coupling partners, Wu and co-workers [91] reported a protocol for the Cu-catalyzed C–H arylation of pyridine N-oxides 9 with arylboronic esters 114 and prepared C2-arylated pyridines 115 in moderate to good yields (Scheme 22). By using an inexpensive Cu catalyst, the method allows for the simple
PDF
Album
Review
Published 12 Jun 2023

Deoxygenative C2-heteroarylation of quinoline N-oxides: facile access to α-triazolylquinolines

  • Geetanjali S. Sontakke,
  • Rahul K. Shukla and
  • Chandra M. R. Volla

Beilstein J. Org. Chem. 2021, 17, 485–493, doi:10.3762/bjoc.17.42

Graphical Abstract
  • to amination and amidation, there are few reports on metal-free C2-heteroarylation of pyridine N-oxides. In 1984, Rogers demonstrated the synthesis of 2-triazolylpyridines from 2-azidopyridines and phenylacetylene [51]. Along the same lines, Keith reported methodologies for the C2-imidazolylation and
  • pyridine N-oxides [54]. Despite the versatility of these methods, the above reports involve the use of external additives for activating the N-oxides and suffer from other disadvantages, including prolonged reaction time, high temperature and limited substrate scope. At the same time, with the advent of Cu
PDF
Album
Supp Info
Letter
Published 17 Feb 2021

Activated carbon as catalyst support: precursors, preparation, modification and characterization

  • Melanie Iwanow,
  • Tobias Gärtner,
  • Volker Sieber and
  • Burkhard König

Beilstein J. Org. Chem. 2020, 16, 1188–1202, doi:10.3762/bjoc.16.104

Graphical Abstract
  • amines, imines, amides, pyridine nitrogen and pyrrole nitrogen or as oxidized nitrogen species, e.g., pyridine-N-oxides [10]. Díaz-Terán et al. examined the surface of the samples (surface groups, chemical state of the elements, metal content and distribution) during the activation process of
PDF
Album
Review
Published 02 Jun 2020

Host–guest complexes of conformationally flexible C-hexyl-2-bromoresorcinarene and aromatic N-oxides: solid-state, solution and computational studies

  • Rakesh Puttreddy,
  • Ngong Kodiah Beyeh,
  • S. Maryamdokht Taimoory,
  • Daniel Meister,
  • John F. Trant and
  • Kari Rissanen

Beilstein J. Org. Chem. 2018, 14, 1723–1733, doi:10.3762/bjoc.14.146

Graphical Abstract
  • :1 v/v, no significant chemical shift changes were observed for nine of the twelve pyridine N-oxides. The above results clearly show the strong influence of DMSO in interfering with the host–guest complexation between BrC6 and the aromatic N-oxides. However, with guests such as 5 and 9, endo cavity
PDF
Album
Supp Info
Full Research Paper
Published 10 Jul 2018

Cross-coupling of dissimilar ketone enolates via enolonium species to afford non-symmetrical 1,4-diketones

  • Keshaba N. Parida,
  • Gulab K. Pathe,
  • Shimon Maksymenko and
  • Alex M. Szpilman

Beilstein J. Org. Chem. 2018, 14, 992–997, doi:10.3762/bjoc.14.84

Graphical Abstract
  • lithium enolate followed by a second SET step to complete the transformation (Scheme 1a) [16][17]. A different approach, developed by Maulide, relies on the highly efficient umpolung of amides into enolonium species using triflic anhydride, a pyridine base and pyridine N-oxides (Scheme 1b). These
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2018

The synthesis of functionalized bridged polycycles via C–H bond insertion

  • Jiun-Le Shih,
  • Po-An Chen and
  • Jeremy A. May

Beilstein J. Org. Chem. 2016, 12, 985–999, doi:10.3762/bjoc.12.97

Graphical Abstract
  • cyclopropene 97 reacted [93][94] to form the same products as the hydrazone 96 did directly when heated to 140 °C. Gold The work by the May group was soon followed by gold-promoted carbene/alkyne cascades. These cascades rely on Zhang’s discovery that the use of pyridine N-oxides allow for the formation of
PDF
Album
Review
Published 17 May 2016

A convergent, umpoled synthesis of 2-(1-amidoalkyl)pyridines

  • Tarn C. Johnson and
  • Stephen P. Marsden

Beilstein J. Org. Chem. 2016, 12, 1–4, doi:10.3762/bjoc.12.1

Graphical Abstract
  • substitution of suitably-activated pyridine N-oxides by azlactone nucleophiles, followed by decarboxylative azlactone ring-opening. The synthesis obviates the need for precious metal catalysts to achieve a formal enolate arylation reaction, and constitutes a formally ‘umpoled’ approach to this valuable class
  • of bioactive structures. Keywords: azlactones; pyridines; pyridine N-oxides; substitution; Introduction Pyridines constitute the most frequently observed class of heterocycles found in pharmaceutical products [1]. As such, there is significant demand for synthetic methods that enable access both to
  • expensive bespoke ligands, based upon the electrophilic activation of pyridine N-oxides and subsequent reaction with acidic carbon nucleophiles [16][17][18][19][20]. Specifically, we have demonstrated that α-pyridyl,α-alkylamino acid derivatives can be prepared in a one-pot three component coupling between
PDF
Album
Supp Info
Letter
Published 04 Jan 2016

The Flögel-three-component reaction with dicarboxylic acids – an approach to bis(β-alkoxy-β-ketoenamides) for the synthesis of complex pyridine and pyrimidine derivatives

  • Mrinal K. Bera,
  • Moisés Domínguez,
  • Paul Hommes and
  • Hans-Ulrich Reissig

Beilstein J. Org. Chem. 2014, 10, 394–404, doi:10.3762/bjoc.10.37

Graphical Abstract
  • reactions of β-ketoenamides 14 and 20 with hydroxylamine hydrochloride provided the symmetric bis(pyrimidine-N-oxide) 28 in 39% yield or the mono-pyrimidine-N-oxide 30 in 54% yield (Scheme 6). The acetoxylation of 2- and 4-alkyl substituted pyridine-N-oxides by treatment with acetic anhydride is known as
  • β-ketoenamides 14 and 20 with hydroxylamine hydrochloride to pyridine-N-oxides 28 and 30 and their subsequent Boekelheide rearrangements furnishing functionalized bis(pyrimidine) derivative 29 and pyrimidine/pyridine conjugate 31. Riley oxidation of bis(pyrimidine) derivative 23a and conversion of
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2014

Gold-catalyzed regioselective oxidation of propargylic carboxylates: a reliable access to α-carboxy-α,β-unsaturated ketones/aldehydes

  • Kegong Ji,
  • Jonathan Nelson and
  • Liming Zhang

Beilstein J. Org. Chem. 2013, 9, 1925–1930, doi:10.3762/bjoc.9.227

Graphical Abstract
  • carboxylate; Introduction We reported in 2010 [1] that α-oxo gold carbenes could be conveniently generated as reactive intermediates in gold-catalyzed intermolecular oxidation of alkynes. By using pyridine N-oxides [1] and later 8-substituted quinoline N-oxides [2] as the external oxidants, this approach
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2013

Organocatalyzed enantioselective desymmetrization of aziridines and epoxides

  • Ping-An Wang

Beilstein J. Org. Chem. 2013, 9, 1677–1695, doi:10.3762/bjoc.9.192

Graphical Abstract
  • enantioselectivities. In the presence of some achiral phase-transfer catalysts or phosphines such as TBAB and P(t-Bu)3, the vicinal chlorohydrins were obtained in high yields. Up to now, three classes of organocatalysts including chiral phosphoramides, chiral phosphine oxides, and chiral pyridine N-oxides were used in
  • -oxides The breakthrough of the organocatalyzed enantioselective desymmetrization of meso-epoxides was the employment of chiral pyridine N-oxides as catalysts. In 2001, Fu [87] and colleagues demonstrated the utilization of selected chiral pyridine N-oxides in the enantioselective desymmetrization of meso
  • -epoxides. These novel chiral pyridine N-oxides possess a plane of chirality in a ferrocenyl backbone. The steric hindrance of the Fe(η5-C5Ar5) group on catalysts (Figure 16, OC-78 to OC-80) is very crucial to the enantioselectivities of desymmetrization of meso-epoxides. The increase of steric hindrance of
PDF
Album
Review
Published 15 Aug 2013
Other Beilstein-Institut Open Science Activities